Automated Data Analysis in

Clinical Flow Cytometry Lab

Xuehai Wang, Ph.D.

Scientist @ VGH and BC Cancer

Assistant Professor @ UBC

Email: Xuehai.Wang@ubc.ca

第四届中国血液学科发展大会

2024年1月5-7日      中国 天津

第四届中国血液学科发展大会

Overview

Clinical Flow Labs in Vancouver

第四届中国血液学科发展大会

T-ALL

B-ALL

Immune deficiencies

ACL/AML

MM

PNH

LPD

Test menus

Clinical flow labs in Vancouver

2008

2014

2020

2024

LPD

8 Colors 3 Tubes

 

ACL

8 Colors 5 Tubes

LPD

13 Colors 3 Tubes

LPD

14 Colors 3 Tubes

 

ACL

12 Colors 5 Tubes

 

AUTOFLOW

LPD

30 Colors 2 Tubes

 

AUTOFLOW2.0

第四届中国血液学科发展大会

Timeline

AML MRD

12 Colors 3 Tubes

Data analysis in Flow cytometry

第四届中国血液学科发展大会

Cells

Markers

Text

Data

+

Flow cytometry data is high dimensional

第四届中国血液学科发展大会

Analysis in Low D

Automated Gating

CD8

CD4

CD8

CD3

CD3

CD4

Flow cytometry data analysis

Dimensional Reduction

Clustering

Classification

CD4

CD3

CD8

CD4 T

CD8 T

Monocytes

Analysis in High D

第四届中国血液学科发展大会

Malek M. et al., Bioinformatics. 31, 606–607 (2015)

Rahim A. et al., Methods. 134-135 (2018)

Automated Gating

A supervised approach to determining the optimal 'gate' locations for individual markers based on their density distributions

Perform automated gating with pre-defined gating strategy

第四届中国血液学科发展大会

k-Mean

flowPeaks

FlowSOM

PhenoGraph

X-shift

ACCENSE

... ...

Common Clustering Algorithms:

UMAP (36 rLN)

UMAP (154 FL)

Clustering

Grouping similar objects

Wang X et al., Nat. Commun. 13,6772 (2022)

 

第四届中国血液学科发展大会

Categorize or distinguish objects (cells) into predefined classes

Logistic Regression

Naive Bayes

Random Forest

K-Nearest Neighbours

XG-Boost

Neural Networks

Binary:

MRD+MRD- ?

Muti-labels:

Hyperplasia?

FL?

CLL?

DLBCL?

T? B? NK? Mono?

Population/ cell level:

Common Classifier:

Naive B

Memory B

GC B

Plasmablast

Plasmacell

UMAP (36 rLN)

Classification

Specimen level:

Wang X et al., Nat. Commun. 13,6772 (2022)

 

Dimensional Reduction 

UMAP

第四届中国血液学科发展大会

第四届中国血液学科发展大会

L. McInnes, J. Healy, J. Melville, Arxiv (2018). 

https://pair-code.github.io/understanding-umap/

PCA:

Find best angles to look at data from lower dimensions

PCA: Principle Component analysis

UMAP: Uniform Manifold Approximation and Projection

Dimensional Reduction 

UMAP: Reconstruct data in lower dimensions

第四届中国血液学科发展大会

B

T

Stats

Abnormal?

Normal?

Suspicious?

Disease type?

Manual

Manual analysis vs Auto analysis 

Data Pre-processing

Gating

Annotation

Reporting

Data Pre-processing

Automated Gating

Classification

Data visualization

FCS modification

Clustering

Dimensional Reduction

Auto

  • FlowCore

  • FlowDensity

  • FloWorkspace

  • Scanppy/FlowSom

  • FlexDashboard

  • RShiny

.......

Import/export/manipulation of flow cytometry data

Perform sequential "gating"

Handling cell population and "gating" objects

Dimension reduction and clustering

Graphical user interface and user experiences

第四届中国血液学科发展大会

Open source tools

Automating flow data analysis to improve tests efficiencies 

Cell prep

Technologist

Technologist

Technologist

Hematopathologist

第四届中国血液学科发展大会

From sample to report

Staining

Lyse/Wash or Wash

Acqusition

Analysis

Reporting

2000

4000

Complexity

Annual test volume

LPD

MM

CD34

PNH

ACL

AML

MRD

第四届中国血液学科发展大会

Increasing test volume

high test complexities

Test volumes vs. complexities

AUTOFLOW

MAGIC-DR

第四届中国血液学科发展大会

  • Deliver objective analysis while enhancing reproducibility

  • Offer clear, intuitive, and informative presentations of flow result

  • Reduce technologist and pathologist workload

We don't want a tool  that make disease diagnosis in a black box

  • Human-in-the-loop and Easily Integratabtle ML framework for AML MRD analysis into conventional analysis

  • Improve the efficiency and accuracy of the AML MRD analysis 

FOR LPD

FOR AML-MRD

MAGIC: MRD Analysis Guided by Integrated Classifier

DR: Dimensionality  Reduction

Strategies

Data Pre-processing

Automated Gating

Classification

FCS modification

Clustering

Dimensional Reduction

GUI

Data Pre-processing

Dimensional Reduction

AUTOFLOW for

Lymphoproliferative Disorders flow

第四届中国血液学科发展大会

  • TubeB1: B Lymphoma Clonality and  subtypes

  • TubeB2: B Lymphoma subtypes

  • TubeT: T Lymphoma Clonality and subtypes

LPD panel

Total

(SSC/CD45)

Mono+Lymph

(CD14/CD7)

Lymphocytes

(CD2/CD3)

T cells

(CD4/CD8)

CD4

CD8

(CD5/CD7)

CD4

(CD5/CD7)

CD4

(CD7/TRBC1)

CD8

(CD5/TRBC1)

CD8

... ...

... ...

... ...

Supervised automated gating for Tube T

Gating hierarchy

>300 populations

Supervised automated gating for Tube T

Tumoral heterogeneity makes it difficult to design a universal strategy to gate the malignant B cell populations

第四届中国血液学科发展大会

Analyzing TubeB1

第四届中国血液学科发展大会

Total

(SSC/CD45)

Mono+Lymph

(CD14/IgM)

Lymphocytes

(CD19+ or CD20+)

B cells

B Pop1

B Pop2

B Pop3

B Pop4

Unsupervised clustering (SOM)

Dimension reduction (UMAP)

Hybrid approach to analyze TubeB1 

1. Click to load files

第四届中国血液学科发展大会

Starting Analysis in just 2 clicks

2. Click to start analysis

第四届中国血液学科发展大会

Starting Analysis in just 2 clicks

Technologist

Technologist

Hematopathologist

第四届中国血液学科发展大会

AUTOFLOW

AUTOFLOW improves LPD test efficiency

Cell prep

Staining

Lyse/Wash or Wash

Acqusition

Automated analysis

Reporting

MAGIC-DR for Acute Myeloid Leukemia Measurable Residual Disease flow

Tube 1&2: Immature markers

Tube 3: Monocytic tube

ACL/AML-MRD panel

第四届中国血液学科发展大会

MAGIC-DR pipeline

 

Shopsowitz K. et al., Cytometry B. under recvision

第四届中国血液学科发展大会

UMAP

Traditional bivariate plots

Traditional bivariate plots vs UMAP plot of a post-induction bone marrow sample

B. L. Wood, Curr Protoc Cytom. 93 (2020).

Dimensional Reduction

第四届中国血液学科发展大会

Building AML Classifiers

 

Shopsowitz K. et al., Cytometry B. under recvision

第四届中国血液学科发展大会

UMAP

Characterization of training data

 

Shopsowitz K. et al., Cytometry B. under recvision

第四届中国血液学科发展大会

Benchmarking classifiers performance

 

Shopsowitz K. et al., Cytometry B. under recvision

第四届中国血液学科发展大会

AML Classifier identified most useful markers

 

Shopsowitz K. et al., Cytometry B. under recvision

AML Classifier prediction

Ground Truth

第四届中国血液学科发展大会

Classifier + UMAP for detecting residual cells

 

Shopsowitz K. et al., Cytometry B. under recvision

Residual cells with distinct phenotype

Residual cells with NOT SO distinct phenotype

Example 2:  AML MRD+

第四届中国血液学科发展大会

UMAP

Bivariate plots

MAGIC-DR AML-MRD analysis using flowjo

Example 1:  AML MRD-

 

Shopsowitz K. et al., Cytometry B. under recvision

第四届中国血液学科发展大会

Conclusion

  • Integrating a supervised classifier with unsupervised dimension reduction offers a robust method for AML MRD analysis that can be seamlessly integrated into conventional workflows.

  • Our approach can support and augment human analysis by highlighting abnormal populations that can be gated on for quantification and further assessment.

Flow Foreward

Technologist

Hematopathologist

第四届中国血液学科发展大会

Technologist

AUTOFLOW 3.0

Sample-Prep Robot

General Neural Net model for clinical flow labs

Fully automate sample prep steps

Cell prep

Staining

Lyse/Wash or Wash

Acqusition

Automated analysis

Reporting

Automation

Thank you!

Questions?

Email: Xuehai.wang@ubc.ca

&

Happy New year!

https://ubcflowinformaticsgroup.github.io/CASH2024

Supps

  • ACL
  • MM
  • PNH
  • CD34

VGH

  • LPD

BC Cancer

5 Tubes; 12-color; ~800/year

1 Tubes; 9-color; ~300/year

2 Tubes; 4-color; ~300/year

1 Tubes; 2-color; ~400/year

3 Tubes; 14-color; ~4000/year

第四届中国血液学科发展大会

第四届中国血液学科发展大会

Clinical Flow cytometry lab

第四届中国血液学科发展大会

Group similar datapoints(cell) together into pre-defined number of groups

Objective: Minimize within group difference

How k-means work

第四届中国血液学科发展大会

Quiz 

第四届中国血液学科发展大会

Quiz 

?

第四届中国血液学科发展大会

Quiz 

Number of plots increases as numbers of parameters increase (∑(n-1)th)

S. C. Bendall et al., Science. 332, 687–696 (2011).

Analysis complexity

Expression Matrix

F. Hahne et al., Bmc Bioinformatics. 10, 106 (2009).

第四届中国血液学科发展大会

Compensation

Transformation

Filtering

Subsetting

Normalization

...

Compensated

Raw

Compensated + Log-Transformed

Compensated + Logicle-Transformed

Data preproccession

第四届中国血液学科发展大会

L. McInnes, J. Healy, J. Melville, Arxiv (2018). 

https://pair-code.github.io/understanding-umap/

tSNE vs. UMAP

AUTOFLOW vs. Manual

AUTOFLOW vs. Manual